Gating of TonB-dependent transporters by substrate-specific forced remodelling

نویسندگان

  • Samuel J. Hickman
  • Rachael E. M. Cooper
  • Luca Bellucci
  • Emanuele Paci
  • David J. Brockwell
چکیده

Membrane proteins play vital roles in inside-out and outside-in signal transduction by responding to inputs that include mechanical stimuli. Mechanical gating may be mediated by the membrane or by protein(s) but evidence for the latter is scarce. Here we use force spectroscopy, protein engineering and bacterial growth assays to investigate the effects of force on complexes formed between TonB and TonB-dependent transporters (TBDT) from Gram-negative bacteria. We confirm the feasibility of protein-only mediated mechanical gating by demonstrating that the interaction between TonB and BtuB (a TBDT) is sufficiently strong under force to create a channel through the TBDT. In addition, by comparing the dimensions of the force-induced channel in BtuB and a second TBDT (FhuA), we show that the mechanical properties of the interaction are perfectly tuned to their function by inducing formation of a channel whose dimensions are tailored to the ligand.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Site-directed disulfide bonding reveals an interaction site between energy-coupling protein TonB and BtuB, the outer membrane cobalamin transporter.

Transport of vitamin B(12) across the outer membrane of Escherichia coli, like that of iron-siderophore complexes, is an active transport process requiring a specific outer membrane transporter BtuB, the proton motive force, and the trans-periplasmic energy coupling protein TonB. Interaction between TonB and two of the TonB-dependent siderophore transporters has been detected previously by form...

متن کامل

Substrate-dependent transmembrane signaling in TonB-dependent transporters is not conserved.

Site-directed spin labeling (SDSL) was used to examine and compare transmembrane signaling events in the bacterial outer-membrane transport proteins BtuB, FecA, and FhuA. These proteins extract energy for transport by coupling to the transperiplasmic protein TonB, an interaction that is thought to be mediated by the Ton box, a highly conserved energy-coupling motif in these transporters. In the...

متن کامل

Identification of functionally important TonB-ExbD periplasmic domain interactions in vivo.

In gram-negative bacteria, the cytoplasmic membrane proton-motive force energizes the active transport of TonB-dependent ligands through outer membrane TonB-gated transporters. In Escherichia coli, cytoplasmic membrane proteins ExbB and ExbD couple the proton-motive force to conformational changes in TonB, which are hypothesized to form the basis of energy transduction through direct contact wi...

متن کامل

Characterization of interactions of TonB and Colicin M with FhuA reconstituted into Nanodiscs

TonB-dependent transporters are β-barrel outer membrane proteins that depend on interactions with the inner membrane protein TonB to drive import of scarce nutrients. Upon becoming ligand-loaded, TonB-dependent transporters bind TonB through a β-strand exchange. FhuA is the TonB-dependent transporter that transports hydroxamate iron siderophores, such as ferrichrome and ferricrocin, into the pe...

متن کامل

Distribution and Functions of TonB-Dependent Transporters in Marine Bacteria and Environments: Implications for Dissolved Organic Matter Utilization

BACKGROUND Bacteria play critical roles in marine nutrient cycles by incorporating and redistributing dissolved organic matter (DOM) and inorganic nutrients in the ocean. TonB-dependent transporter (TBDT) proteins allow Gram-negative bacteria to take up scarce resources from nutrient-limiting environments as well as siderophores, heme, vitamin B12, and recently identified carbohydrates. Thus, t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2017